YEAR 1 | PURE MATHEMATICS | WEEK 22 EXAM QUESTIONS - MARK SCHEME ### Q1 (EDEXCEL C2 JAN 2006 Q2) | 2. | (a) $(1+px)^9 = 1+9px$; $+\binom{9}{2}(px)^2$ | B1 B1 | (2) | |------|--|-------|-----| | | (b) $9p = 36$, so $p = 4$ | M1 A1 | | | | (b) $9p = 36$, so $p = 4$ $q = \frac{9 \times 8}{2} p^2 \text{or} 36p^2 \text{or} 36p \text{ if that follows from their (a)}$ | M1 | | | | So $q = 576$ | A1cao | (4) | | | | | 6 | | | (a) 2^{nd} B1 for $\binom{9}{2}(px)^2$ or better. Condone "," not "+". | | | | | (b) 1 st M1 for a linear equation for p. | | | | | 2^{nd} M1 for either printed expression, follow through their p . | | | | N.B. | $1+9px+36px^2$ leading to $p = 4$, $q = 144$ scores B1B0 M1A1M1A0 i.e 4/6 | | | ### Q2 (EDEXCEL C2 JUN 2006 Q4) 4. (a) $$f(-2) = 2(-2)^3 + 3(-2)^2 - 29(-2) - 60$$ M: Attempt $f(2)$ or $f(-2)$ M1 $$= -16 + 12 + 58 - 60 = -6$$ A1 (2) (b) $f(-3) = 2(-3)^3 + 3(-3)^2 - 29(-3) - 60$ M: Attempt $f(3)$ or $f(-3)$ M1 $$(= -54 + 27 + 87 - 60) = 0 \therefore (x+3) \text{ is a factor}$$ A1 (2) (c) $(x+3)(2x^2-3x-20)$ M1 A1 $$= (x+3)(2x+5)(x-4)$$ M1 A1 (4) # Q3 (EDEXCEL C1 June 2005 Q6) | 6. (a) | $6x+3 > 5-2x \Rightarrow 8x > 2$ | M1 | |--------|--|---------------| | | $x > \frac{1}{4}$ or 0.25 or $\frac{2}{8}$ | A1 | | | $x > \frac{1}{4}$ or 0.25 or $\frac{1}{8}$ | | | | | (2) | | | | 241 | | (b) | $(2x-1)(x-3) (>0)$ Critical values $x = \frac{1}{2}$, 3 (both) | M1 | | | Critical values $x = \frac{1}{2}$, 3 (both) | A1 | | | Critical values $x = \frac{1}{2}$, 3 (both) | AI | | | | | | | ₹ ₁ | | | | | | | | Choosing "outside" region | M1 | | | $x > 3$ or $x < \frac{1}{2}$ | | | | $x > 3$ or $x < \frac{\pi}{2}$ | A1 f.t. | | | | (4) | | | | (4) | | | $x > 3$ or $\frac{1}{4} < x < \frac{1}{2}$ | | | (c) | $\frac{3}{4}$ $\frac{3}{2}$ | B1f.t. B1f.t. | | | | (2) | | | | (2) | | | | (8) | | | | (-) | ## 'Q4 (EDEXCEL C2 JUN 2014 Q8) | 8. | Graph of $y = 3^x$ and solving | $3^{2x} - 9(3^x) + 18 = 0$ | | |-----|--------------------------------|--|-----| | (a) | | At least two of the three criteria correct. (See notes below.) | B1 | | | | All three criteria correct. (See notes below.) | В1 | | | <i>y</i> | Criteria number 1: Correct shape of curve for $x \ge 0$ and at least touches the positive y-axis. Criteria number 2: Correct shape of curve for $x < 0$. Must not touch the x- | | | | (0,1) | axis or have any turning points. Criteria number 3: (0, 1) stated or in | | | | O x | a table or 1 marked on the y-axis. Allow (1, 0) rather than (0, 1) if | | | | | marked in the "correct" place on the y-
axis. | | | | | | [2] | # YEAR 1 | PURE MATHEMATICS | WEEK 22 EXAM QUESTIONS - MARK SCHEME | (b) | $(3^x)^2 - 9(3^x) + 18 = 0$ or $y = 3^x \Rightarrow y^2 - 9y + 18 = 0$ | Forms a quadratic of the correct form in 3^x or in "y" where "y" = 3^x or even in x where "x" = 3^x | | M1 | |-----|---|---|--|---------| | | $\{(y-6)(y-3)=0 \text{ or } (3^x-6)(3^x-3)=0\}$ | | | | | | $y = 6$, $y = 3$ or $3^x = 6$, $3^x = 3$ | Both $y = 6$ and $y = 3$. | | A1 | | | $\left\{3^{x} = 6 \Rightarrow\right\} x \log 3 = \log 6$ or $x = \frac{\log 6}{\log 3}$ or $x = \log_{3} 6$ | where $k > 0$, k | for solving $3^x = k$
$\neq 1, k \neq 3$
$x \log 3 = \log k$ or
$x = \frac{\log k}{\log 3}$ or $x = \log_3 k$ | dM1 | | | x = 1.63092 | awrt 1.63 | | A1cso | | | Provided the first M1A1 is scored, the second M1A1 can be implied by awrt 1.63 | | | | | | x = 1 | x = 1 stated as a solution from <i>any</i> working. | | B1 | | | | | | [5] | | | | _ | | Total 7 | (a) $$x(x^2 - 6x + 9)$$ B1 = $x(x - 3)(x - 3)$ M1 A1 3 #### Note B1 for correctly taking out a factor of x M1 for an attempt to factorize their 3TQ e.g. (x+p)(x+q) where |pq| = 9. So (x-3)(x+3) will score M1 but A0 A1 for a fully correct factorized expression – accept $x(x-3)^2$ If they "solve" use ISW S.C. If the only correct linear factor is (x-3), perhaps from factor theorem, award B0M1A0 Do not award marks for factorising in part (b) #### For the graphs "Sharp points" will lose the 1st B1 in (b) but otherwise be generous on shape Condone (0, 3) in (b) and (0, 2), (0,5) in (c) if the points are marked in the correct places. Shape / Through origin (not touching) Touching x-axis only once Touching at (3, 0), or 3 on x-axis [Must be on graph not in a table] B1 B1 B1ft 4 #### Note 2nd B1 for a curve that starts or terminates at (0, 0) score B0 4^{th} B1ft for a curve that touches (not crossing or terminating) at (a, 0) where their $y = x(x - a)^2$